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Abstract
The aim of this article is to provide an overview of the orthogonal array compos-
ite design (OACD) methodology, illustrate the various advantages, and provide
a real-world application. An OACD combines a two-level factorial design with
a three-level orthogonal array and it can be used as an alternative to exist-
ing composite designs for building response surface models. We compare the
D-efficiencies of OACDs relative to the commonly used central composite design
(CCD) when there are a few missing observations and demonstrate that OACDs
are more robust to missing observations for two scenarios. The first scenario
assumes one missing observation either from one factorial point or one addi-
tional point. The second scenario assumes two missing observations either from
two factorial points or from two additional points, or from one factorial point and
one additional point. Furthermore, we compare OACDs and CCDs in terms of
I-optimality for precise predictions. Lastly, a real-world application of an OACD
for a tuberculosis drug combination study is provided.
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1 INTRODUCTION

Tuberculosis (TB) is in the top 10 leading causes of death in the world with about 1.4 million deaths in 2019.1 TB is a
treatable and curable disease but in some cases, severe drug resistance can develop. For these patients, there are limited
treatment options and some can be expensive and toxic, and often require up to 2 years of chemotherapy treatment.2
To reduce drug resistance and toxicity, various drug combinations are being used. One challenge in identifying an opti-
mal combination of drugs is that the number of possible combinations increases exponentially as the number of drugs
increases.3 In the search to find the best drug-dose combinations, Silva et al4 developed a second generation feedback sys-
tem control (FSC.II) technology that dramatically reduces the number of iterations required for drug-dose optimization.
In turn, this implies reduced time, effort, and costs for the treatment.

The FSC.II methodology has four phases. In Phases 1 and 2, dose response curves are generated for each drug and drug
screening experiments are performed, respectively. Recently, Vazquez et al5 proposed two-level designs with intermediate
run sizes that can be considered in Phase 2 for drug screening. Phase 3 of the FSC.II methodology considers iterative
drug combination testing and requires exploration of all possible combinations of numerous drugs at various levels. In
Phase 3, typically an orthogonal array composite design (OACD) is used to develop a second-order model to describe
the relationship between the drugs of interest and the response. Lastly, Phase 4 involves an optimization of the drug
combinations and drug ratios.

Statistics in Medicine. 2022;1–18. wileyonlinelibrary.com/journal/sim © 2022 John Wiley & Sons Ltd. 1

https://orcid.org/0000-0002-6247-2033
https://orcid.org/0000-0002-3502-0664
https://orcid.org/0000-0001-5568-3054
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsim.9423&domain=pdf&date_stamp=2022-05-06


2 LUNA et al.

Our work is focused on the OACDs in Phase 3. The novel development of an OACD was originally introduced by
Xu et al6 as an alternative to existing composite designs. An OACD combines a two-level factorial or fractional factorial
design and a three-level orthogonal array (OA), and provides a good balance between run size economy and parameter
estimation efficiency. Since the introduction of an OACD, research related to OACDs has been increasing including many
theoretical developments and applications to enhance the use of other designs. Examples include: definitive screening
designs,7 uniform composite designs,8 designs for third-order models,9 as well as exploring the robustness to missing
data.10 Moreover, given the growing literature on the use of design of experiments in medical applications,11,12 there are
also numerous and diverse applications specifically of OACDs in various disciplines. Some examples include determining
micropollutants for water contamination,13 a 12-drug application to determine the optimal combination therapy against
SARS-CoV-2,14 an application with T-cell lymphoma,15 optimization of antioxidant drug combinations in skin can-
cer,16 studying prostate cancer drugs,17 lipid accumulation for biodiesel fuel,18 carcinoma cancer applications,19-21 among
others.22-24

The aim of this article is to demonstrate the OACD methodology by building upon the foundation set by Xu et al6 and
illustrate the advantages of using an OACD as an alternative to an existing popular class of composite designs. Section 2
introduces the OACD methodology and reviews the construction method. Section 3 compares OACDs with popular cen-
tral composite designs (CCDs) in terms of D-efficiency for estimating model parameters. Section 4 compares OACDs with
CCDs in terms of I-optimality for making precise predictions of the response. Section 5 demonstrates that OACDs can
have better robustness properties to missing observations than CCDs. Section 6 illustrates the construction and analysis
of an OACD for a TB drug combination study. This study was selected from the various applications of OACDs in the TB
literature.2-4,25 Additionally, in the context of the TB application, the built-in ability to perform cross-validation and the
robustness to missing observations from either a factorial or additional point are shown. The article concludes with some
remarks in Section 7.

2 ORTHOGONAL ARRAY COMPOSITE DESIGNS

Before we discuss the OACD methodology in more detail, we provide a brief background on factorial designs and compos-
ite designs. Factorial designs are efficient for studying the effects of two or more factors simultaneously. For experiments
with k factors, each at two levels, full factorial designs have 2k observations or runs that enable the estimation of the linear
effect of each factor on the response over the range of the factor levels chosen, these are known as main effects. Addi-
tionally, a two-factor interaction effect occurs when the effect of one factor on the response changes when the setting of
a second factor changes. Furthermore, all higher-order interactions are similarly defined. Collectively, main effects and
all interaction effects are called factorial effects.26

A full factorial design enables the estimation of all main effects and interaction effects. However, they are often imprac-
tical or too expensive because the sample size grows exponentially with the number of factors. For economical reasons,
a fraction of the runs in the full factorial design can be used, these are called fractional factorial designs.12 Fractional
factorial designs are broadly classified into two categories: regular designs and nonregular designs. A regular fractional
factorial design is defined for k factors, each at two levels, as a 2−p fraction of the full 2k factorial design and denoted by
2k−p. It has 2k−p runs and because of the smaller sample size it cannot estimate all possible higher-order interaction effects.
In particular, the factorial effects become aliased with one another. To overcome this issue, it is typically assumed that
higher-order interactions are negligible because they are less likely to be important than lower-order interactions.26 The
amount of aliasing in a fractional factorial design is measured by its resolution. A larger resolution means less restrictive
assumptions regarding which interactions are negligible to obtain a unique interpretation of the data. For selection of a
regular fractional factorial design, the minimum aberration criterion is recommended, which maximizes the resolution
of the design.26

A regular fractional factorial design has what is known as a simple aliasing structure, in that any two effects are
either orthogonal or fully aliased. In contrast, a nonregular design has a complex aliasing structure, such that there exist
effects that are neither orthogonal nor fully aliased. Nonregular designs are often considered for their run size economy
and can be considered if a smaller design is needed. The generalized minimum aberration criterion27,28 can be used for
the selection of nonregular designs. Generalized minimum aberration designs minimize the overall contamination of
nonnegligible interactions on the estimation of main effects.27,28

Factorial designs provide an efficient way to identify significant factors that affect the response of interest. After the sig-
nificant factors have been identified, the next step is to model the response keeping in mind that there may be a curvilinear
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relationship with the factors, in which case we may be interested to estimate combination levels of the factors that max-
imize or minimize the expected response variable. To this end, we entertain a second-order model with k quantitative
factors of the form

y = 𝛽0 +
k∑

i=1
𝛽ixi +

k∑
i=1

𝛽iix2
i +

k−1∑
i=1

k∑
j=i+1

𝛽ijxixj + 𝜖, (1)

where 𝛽0, 𝛽i, 𝛽ii, and 𝛽ij are the intercept, linear, quadratic, and bilinear (or two-factor interaction) terms, respectively.
The error term 𝜖 is assumed to have mean zero and constant variance and all errors are assumed to be independent. A
composite design may be used to estimate all parameters in the second-order model (1). Such a design has three parts:
(i) nf factorial points (x1, … , xk) with all xi = −1 or 1 from a two-level full factorial or fractional factorial design; (ii) na
additional points with all xi = −𝛼, 0, 𝛼, that are commonly known as axial points; (iii) n0 center points with all xi = 0.
Without loss of generality, we assume 𝛼 = 1 and focus on one particularly useful class of composite designs in the rest of
the article.

An OACD is a class of composite designs based on a two-level factorial design and a three-level OA.6 An OA of N runs,
k columns, s levels, and strength t, denoted by OA(N, sk, t), is an N × k matrix in which all st level-combinations appear
equally often in every N × t submatrix.26 We omit the strength t when t = 2. For example, a 2k factorial design can be
viewed as OA(N, 2k, t) with N = 2k and t = k. Similarly, a three-level OA can be written as OA(N, 3k, t). Thus, an OACD
is a composite design which consists of a two-level factorial design as its factorial points, a three-level OA as its additional
points, plus any number of center points.

The choice of the two-level factorial design and three-level OA should be based on good or optimal two-level and
three-level designs using criterion such as the minimum aberration or generalized minimum aberration. Once a two-level
and a three-level design are chosen, they can be put together to form an OACD. To construct an OACD, the simplest
approach is to simply stack the two-level and three-level designs together, and the resulting OACD often has good or
optimal properties with respect to some criterion. For an OACD, it has been shown that column permutations or level per-
mutations of an OA may lead to different geometrical structures and efficiencies.6,29 Therefore, one can permute columns
and levels of the three-level portion in an OACD to obtain better efficiency with respect to some criterion. For the k-factor
three level portion, the total number of permutations is k!(3!)k, which is computationally expensive or infeasible for mod-
erate or large k. Therefore, we can find a (nearly) best permutation through a stochastic search algorithm such as the
threshold accepting algorithm.30 Otherwise, if the total number of permutations is feasible, we can use an enumeration
method to search for the best permutation such that the permuted OACD is more efficient with respect to some criterion.
In particular, by combining a two-level and a three-level design in an OACD, we are able to fit a second-order model to
screen important factors by studying the linear, quadratic, and bilinear effects.6 For this reason, an OACD is sometimes
referred to as a second-order design.

An appealing feature of the OACD is the built-in ability to perform cross-validation on the analysis results. Using an
OACD, we can fit three types of models: a model with linear and bilinear terms based on the two-level design, a model
with linear and quadratic terms based on the three-level OA, and a full second-order model based on the entire OACD.
Therefore, each linear effect is estimated three times and each bilinear or quadratic effect is estimated twice, providing
the ability to check the consistency of their estimates. With this built-in ability to perform cross-validation it is important
to note that the estimates of the parameters of the full second-order model will be correlated with the estimates of the
parameters from the other two models. Additionally, the OACD can be implemented sequentially, similar to many existing
composite designs.

3 D-EFFICIENCY OF COMPOSITE DESIGNS

When constructing a design for an experiment one must consider the possible trade-offs between the choice of the design
and the design efficiency based on some statistical criterion. A widely accepted criterion is D-optimality for estimat-
ing model parameters. In this section, we briefly discuss the concept of D-efficiency of a design and refer the reader to
Kiefer31 for additional details. Let d be a second-order design with N runs and let X = (1,L,Q,B) be the model matrix of
d, where 1 is a column of ones, and L,Q,B denote the columns corresponding to the linear, quadratic, and bilinear terms,
respectively, in Equation (1). Let M(d) = X′X∕N be the (normalized) information matrix for d. The D-optimality criterion
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seeks to maximize the determinant of the information matrix |M(d)| by choice of a design. This in turn minimizes the
generalized variance of the parameter estimates in Equation (1) and so the obtained estimates are as precise as possible
given the sample size N.

For any k-factor design d, its D-efficiency is defined by

Deff(d) =
( |M(d)||M(𝜉∗)|

)1∕p

,

where 𝜉∗ is an approximate D-optimal design and p = (k + 1)(k + 2)∕2 is the number of parameters in the second-order
model (1). It is instructive to consider approximate designs, which can be viewed as probability measures on the design
space and are easier to study analytically.32 For example, the determinant of the information matrix of the approximate
D-optimal design 𝜉∗ on the design space [−1, 1]k has a closed form and is given by31,33

|M(𝜉∗)| = ukvk(k−1)∕2(u − v)k−1(u + (k − 1)v − ku2), (2)

where

u = k + 3
4(k + 1)(k + 2)2 ×

(
(2k2 + 3k + 7) + (k − 1)(4k2 + 12k + 17)1∕2) ,

v = k + 3
8(k + 2)3(k + 1)

×
(
(4k2 + 8k2 + 11k − 5) + (2k2 + k + 3)(4k2 + 12k + 17)1∕2) .

As a result, we can use (2) to compute the D-efficiency for a given design.
When only a subset of the model parameters is of interest, we find a Ds-optimal design that provides the most accurate

estimates for parameters in the subset only. If s is the subset of interest, the Ds criterion value is defined by

Ds(d) =
1
N
||||X′

sXs − X′
sX(s)

(
X′
(s)X(s)

)−1
X′
(s)Xs

||||
1∕|s|

, (3)

where Xs and X(s) are the submatrices of X corresponding to the parameters in s and not in s, respectively, and |s| is the
number of parameters in s.

We consider the subsets consisting of the k linear parameters, the k quadratic parameters, and the k(k − 1)∕2 bilinear
parameters, respectively. The Ds-efficiency of a design d can be calculated as7

DL, eff(d) = DL(d), DQ, eff(d) = 4DQ(d), DB, eff(d) = DB(d),

where DL, DQ, and DB are computed as in (3) for the linear, quadratic, and bilinear terms, respectively.
Table 1 provides the design generating information for both the two-level factorial portion and three-level OA por-

tion for k = 3, … , 11 factors, where the two-level design is either a full factorial design or has at least resolution V. We
compare the D-efficiency and Ds-efficiency of the OACDs in Table 1 with the popular CCDs. As described in Section 2,
a composite design has a total of N = nf + na + n0 points, and has either three or five levels depending on whether
𝛼 = 1 or not. For k = 3, … , 11, the factorial points used in the OACDs and the CCDs are the same, but the addi-
tional points in the CCD are obtained with na = 2k. Figure 1 compares the performances of the D-efficiencies and the
Ds-efficiencies for these composite designs with n0 = 0. The overall D-efficiency of the OACD outperforms the popu-
lar CCD for k > 4. Furthermore, we observe that the Ds-efficiencies of the OACDs outperform those of the CCDs for
all k in both the linear and bilinear terms. For the quadratic terms, OACD achieves higher DQ-efficiency than CCD
for k ≥ 5.

So far we assume that the two-level portion is a regular resolution V design, which may have too many runs for
some applications when k > 5. To reduce the number of runs, one can choose a resolution III or IV design, regular or
nonregular, as the two-level portion. It is well known that a regular resolution IV design cannot be used as the two-level
portion for a CCD as this does not lead to a second-order design.26 In contrast, we can use a regular resolution IV design
as the two-level portion to construct a smaller OACD with high D-efficiency.6,7
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T A B L E 1 Select OACDs for k = 3, … , 11 factors
Two-level factorial

portion Three-level OA

k Design nf Columns and generators na Columns

3 23 8 - OA(9) (1-3)

4 24 16 - OA(9) (1-4)

5 25−1
V 16 x5 = x1x2x3x4 OA(18) (2-6)

6 26−1
VI 32 x6 = x1x2x3x4x5 OA(18) (1-6)

7 27−1
VII 64 x7 = x1x2x3x4x5x6 OA(18) (1-7)

8 28−2
V 64 x7 = x1x2x3x4x5, x8 = x1x2x3x6 OA(27) (1-8)

9 29−2
V 128 x8 = x1x2x3x4x5, x9 = x1x2x3x6x7 OA(27) (1-9)

10 210−3
V 128 x8 = x1x2x3x4x5, x9 = x1x2x3x6x7, x10 = x1x2x4x6 OA(27) (1-10)

11 211−4
V 128 x8 = x1x2x3x4x5, x9 = x1x2x3x6x7, x10 = x1x2x4x6, x11 = x1x3x5x7 OA(27) (1-11)

Note: OA(9), OA(18), and OA(27) are available in Appendix Table A1.

F I G U R E 1 D-efficiencies and Ds-efficiencies for OACDs and CCDs of various sizes with 3 ≤ k ≤ 11 and n0 = 0

4 I- OPTIMALITY OF COMPOSITE DESIGNS

Given that the purpose of an OACD is to fit a second-order model, I-optimality is another appropriate design criterion to
use to compare OACDs and CCDs. Whereas D-optimality minimizes the generalized variance to obtain precise parameter
estimates for all the model parameters, I-optimality minimizes the average prediction variance and is used to make precise
predictions of the response.

Given an N-run design d and the second-order model (1), the prediction variance at an arbitrary point x is var(ŷ(x)) =
𝜎2f′(x)(X′X)−1f(x) = 𝜎2f′(x)M(d)−1f(x)∕N, where f′(x) = (1, x1, … , xk, x2

1 , … , x2
k, x1x2, … , xk−1xk). An I-optimal design

minimizes the normalized average or integrated prediction variance

I(d) = N
𝜎2 ∫ var(ŷ(x))𝜇(x) = ∫ f′(x)M(d)−1f(x)𝜇(x),
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F I G U R E 2 I-efficiency of OACDs relative to CCDs with 3 ≤ k ≤ 11 and n0 = 0, 1, 2

where 𝜇 is the uniform measure on the experimental region with total measure 1. When the experimental region is
[−1, 1]k, the I-value can be computed as34

I(d) = trace[M(d)−1A],

where

A =

⎡⎢⎢⎢⎢⎢⎣

1 0 1
3
1′k 0

0 1
3

Ik 0 0
1
3
1k 0 4

45
Ik + 1

9
Jk 0

0 0 0 1
9

Iq

⎤⎥⎥⎥⎥⎥⎦
(4)

is the moment matrix, 0 is a vector or matrix of appropriate dimension containing all zeros, 1k is column vector containing
k ones, Ik is a k × k identity matrix, Jk is a k × k matrix of ones, and q = k(k − 1)∕2. Unlike D-optimality, an approximate
I-optimal design over a cube [−1, 1]k is unknown in the literature. To compare an OACD with a CCD, we use the relative
I-efficiency defined as

Relative I-efficiency = I(ccd)
I (oacd)

= trace[M(ccd)−1A]
trace[M(oacd)−1A]

.

Figure 2 shows the relative I-efficiency comparing OACDs to CCDs with k = 3, … , 11 and n0 = 0, 1, 2. With n0 = 0, 1, 2
center runs, OACDs achieve higher I-efficiency than CCDs for k ≥ 8, k ≥ 7, and k ≥ 6, respectively. If the goal of the
experiment is prediction, then it is recommended to add at least one or two center runs to the design since it provides
information on the error variance and helps stabilize the variance of the predicted response. On the other hand, adding
center runs will reduce the D-efficiency slightly for both OACDs and CCDs.7

5 ROBUSTNESS OF OACDS

For any design, missing observations are sometimes unavoidable even from a well-planned experiment. Missing obser-
vations can happen for a variety of reasons including errors in the data collection or outliers. Smucker et al35 explore the
robustness of classical and optimal designs to missing observations and provide some empirical results in both screen-
ing and response surface settings. Akhtar and Prescott36 introduce a loss criterion based on D-efficiency for the CCD to
assess the robustness when observations are missing. The aim of this criterion is to minimize the maximum loss for miss-
ing observations. Our attention focuses on minimizing the effect of missing observations and comparing the robustness
of OACDs and CCDs with missing observations.
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F I G U R E 3 Relative loss for one missing factorial point (Lf ) and one missing axial point (La) for OACDs and CCDs with 3 ≤ k ≤ 11 and
n0 = 0

In general, if m = 1, 2, … observations are missing from an experiment, then m rows in the model matrix X will be
missing. If Xm is the m × p matrix of the m missing rows corresponding to the m missing observations, and Xr is the
(N − m) × p reduced model matrix, then the information matrix can be expressed as X′X = X′

mXm + X′
rXr. It is well known

that the determinant of the reduced information matrix, |X′
rXr|, does not exceed the determinant of full information

matrix, |X′X|. The relative reduction in |X′X| due to a missing observation is called loss. The relative loss can be defined
as Li, which represents the loss for the ith combination of

(
N
m

)
when m runs are missing: Li =

|X′X|−|X′
rXr||X′X| = 1 − |X′

rXr||X′X| ;

i = 1, … ,

(
N
m

)
. As 0 ≤ Li ≤ 1, a small value of Li indicates a low reduction in the determinant of the information matrix

and, in this sense, less loss of information. Thus, a design with a smaller loss due to missing observations is judged more
robust.37

Based on the composite structure of an OACD we classify the loss of a single observation as follows: Lf as the loss for
one missing factorial point, and La as the loss for one missing axial point. Whether the missing observation is a factorial
point or an axial point, the losses are averaged to one value since empirical studies have shown that there is little difference
among the losses in each type.10 Lastly, the loss of a center point is not considered in this study as their losses are small
relative to the losses of a factorial or an axial point.

Figure 3 displays the loss of a single factorial point Lf and the loss of a single axial point La for OACDs and CCDs
with k = 3, … , 11 and n0 = 0. When an OACD and a CCD are constructed with the same factorial portions (see Table 1)
there will be lower loss of Lf for an OACD than a CCD for all k. However when considering the loss from an axial point,
there is a decreasing pattern in La for CCDs compared to OACDs. In particular, this constant decrease in La results in
CCDs achieving a lower loss of La for k = 4, 7, and 11. Note that when an OACD uses the same OA for its axial points
consecutively for each additional factor, the run size will only increase by the number of factorial points being added. On
the other hand, a CCD increases its axial points by two runs for each additional factor, which can result in lower loss in
La when the OACD and CCD share the same two-level factorial portion.

Next, the loss from two missing observations is considered. In general, there are
(

N
2

)
combinations of two missing

runs from an N-run design. We classify the pairs of missing observations as follows: Lff as the loss for missing two factorial
points; Lfa as the loss for missing a factorial and an axial point; Laa as the loss for missing two axial points. Similar to the
case with one missing observation, the losses within each respective group are averaged to one value.

Figure 4 displays the loss of information when two observations are missing, classified as Lff ,Laa,Lfa for both OACD
and CCD. If we consider the loss of two factorial points, OACD achieves lower loss for all k = 3, … , 11. When two axial
points are missing the CCD has a decreasing pattern and results in a lower Laa for k = 4, 7, and 11, which is similar to the
case when one observation is missing. However, when a factorial and an axial point are missing, the decreasing pattern
diminishes and the OACD achieves lower Lfa except for k = 4 and 11. It should be noted that the addition of center runs
(n0) could potentially reduce the loss of information due to a missing axial point, depending on the number of center
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F I G U R E 4 Relative loss for two missing factorial points (Lff ), missing one factorial point and one axial point (Laa), and two missing
axial points (Lfa) for OACDs and CCDs with 3 ≤ k ≤ 11 and n0 = 0

runs added to the design. Furthermore, at the expense of nine additional runs, for k = 11 factors, a 36-run OA could
be considered instead of a 27-run OA for the three-level OA portion of an OACD, which would achieve lower loss in
La,Laa,Lfa compared to a CCD. In general, if one can afford adding a few additional runs the resulting design would be
more robust against the loss of information from possible missing observations.

Lastly, we examine the impact of missing observations on the predictive capability of OACDs compared to CCDs. To
compare the full design and reduced design in terms of the I-optimality criterion, we define the relative loss of I-efficiency
as follows:

RL = 1 −
trace

[
(X′X)−1A

]
trace

[
(X′

rXr)−1A
] ,

where X and Xr are the model matrices of the full design and reduced design, respectively, and A is the moment matrix
defined in (4). As 0 ≤ RL ≤ 1, a small value of RL indicates a lower loss in average prediction variance in our experimen-
tal region. Figure 5 displays the loss of I-efficiency for a single missing factorial point (RLf ), and the loss of I-efficiency
from a single missing axial point (RLa) for OACDs and CCDs with k = 3, … , 11 and n0 = 1. As before, we average
the loss over all factorial points or all axial points when calculating RLf or RLa. With one missing factorial point, the
OACD achieves lower loss for k ≥ 3, however the performance between OACD and CCD are nearly identical for k ≥ 7.
For k = 5, the CCD has notably high loss with one missing factorial point. If a single axial point is missing, the OACD
achieves lower loss for 3 ≤ k ≤ 11 except k = 4. Furthermore, the loss of I-efficiency can be explored for two missing
observations. While not pictured here, we did explore two missing observations and the trends in the loss of I-efficiency
for 3 ≤ k ≤ 11 and the results are very similar to the situations when only one observation was missing, as described
above.

6 TB APPLICATION

To illustrate the construction, analysis, built-in ability to perform cross-validation, and robustness of an OACD, we con-
sider the TB study in Silva et al.4 This study applies the FSC.II methodology to a high throughput macrophage cell
culture model of TB using mycobacterium tuberculosis that expresses isopropyl 𝛽-D-1-thiogalactopyranoside-inducible
green fluorescent protein (Mtb-iGFP). The efficacy of the TB drug combinations in inhibiting intramacrophage
Mtb-iGFP using fluorescence-based assay with high-throughput imaging analysis is measured using inhibition defined as
follows:

Inhibition = 1 −
(

Integrated GFP fluorescence intensity per nucleus of treated sample
Integrated GFP fluorescence intensity per nucleus of untreated sample

)
.
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F I G U R E 5 Relative loss of I-efficiency for one missing factorial point (RLf ) and one missing axial point (RLa) for OACDs and CCDs
with 3 ≤ k ≤ 11 and n0 = 1

T A B L E 2 TB drug abbreviations

Abbreviation Drug name

AMC Amoxicillin/clavulanate

CLZ Clofazimine

CYS Cycloserine

EMB Ethambutol

INH Isoniazid

LZD Linezolid

MXF Moxifloxacin

PA824 PA-824

PAS Para-aminosalicylic acid

PRO Prothionamide

PZA Pyrazinamide

RIF Rifampicin

SQ109 SQ-109

TMC TMC-207

A series of experiments are performed and the percent of inhibition is recorded for each. The data from each experiment
is used to fit a second-order model to identify the individual and combinations of drugs that produce the highest percent-
age of inhibition. Positive model coefficients indicate a higher percentage of inhibition, and negative model coefficients
indicate a lower percentage of inhibition.

In the TB study by Silva et al,4 the four phases of the FSC.II methodology are implemented, starting with 14 TB
drugs. This study provides a unique application of OACDs with a large number of factors, as many of the applica-
tions in the literature are for a much smaller number of factors. Additionally, the particular approach of the FSC.II
methodology has the capability to support larger designs. The initial 14 drugs and their abbreviations are presented in
Table 2. In Phase 2 of Silva et al,4 a two-level screening test is used to reduce the number of drugs to the following
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T A B L E 3 Parameter estimates for the nine-drug experiment

155-Run 128-Run 27-Run

CLZ 0.0601*** 0.0605*** 0.0661**

EMB 0.0550*** 0.0553*** 0.0589**

PA824 0.0229*** 0.0234*** 0.0506*

PAS 0.0037 0.0031 0.0178

PRO 0.0405*** 0.0409*** 0.0494*

PZA 0.0269*** 0.0277*** 0.0394*

RIF 0.0154*** 0.0155*** 0.0178

SQ109 0.0608*** 0.0617*** 0.0589**

TMC 0.0412*** 0.0423*** 0.0461*

CLZ2 −0.0559** −0.0372

EMB2 −0.0243 −0.0189

PA8242 −0.0168 −0.0339

PAS2 0.0068 0.0044

PRO2 −0.0073 −0.0006

PZA2 0.0106 0.0328

RIF2 0.0257 0.0311

SQ1092 0.002 0.011

TMC2 0.0249 0.0361

CLZ:EMB −0.0112** −0.0114**

CLZ:PA824 0.0026 0.002

CLZ:PAS −0.0017 −0.002

CLZ:PRO −0.0142*** −0.0152***

CLZ:PZA −0.0053 −0.0063

CLZ:RIF −0.0123*** −0.0138***

CLZ:SQ109 −0.0281*** −0.0291***

CLZ:TMC −0.0024 −0.0028

EMB:PA824 0.003 0.0028

EMB:PAS −0.0014 −0.0025

EMB:PRO −0.0113** −0.0113**

EMB:PZA −0.0116** −0.0127**

EMB:RIF 0.0039 0.0036

EMB:SQ109 −0.0465*** −0.0473***

EMB:TMC −0.0054 −0.0061

PA824:PAS −0.002 −0.0022

PA824:PRO −0.0053 −0.0069

PA824:PZA −0.002 −0.0017

PA824:RIF −0.0025 −0.003

PA824:SQ109 0.0028 0.0033

PA824:TMC −0.0044 −0.0052
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T A B L E 3 Continued

155-Run 128-Run 27-Run

PAS:PRO 0.0011 −0.0006

PAS:PZA 0.0047 0.0036

PAS:RIF 0.0033 0.0027

PAS:SQ109 −0.0085* −0.0092*

PAS:TMC 0.0018 0.0014

PRO:PZA −0.0101** −0.0105**

PRO:RIF −0.0042 −0.0045

PRO:SQ109 −0.022*** −0.022***

PRO:TMC −0.0081* −0.0089*

PZA:RIF −0.0081* −0.0084*

PZA:SQ109 −0.0029 −0.0041

PZA:TMC −0.0036 −0.005

RIF:SQ109 −0.0085* −0.0091*

RIF:TMC −0.0087* −0.01**

SQ109:TMC −0.007 −0.0069

Residual error �̂� 0.042 0.04264 0.07013

R2 0.9462 0.9471 0.9123

Significance levels: 0‘***’ 0.001‘**’ 0.01‘*’ 0.05 ‘⋅’

nine drugs: CLZ, EMB, PA824, PAS, PRO, PZA, RIF, SQ109, TMC. The focus of this article is on Phase 3 of the FSC.II
methodology, which consists of a series of iterative experiments using OACDs. Specifically, we focus on Iterations I
and II from Silva et al,4 which use a 155-run OACD for these nine drugs and a 50-run OACD for six out of these nine
drugs.

6.1 Nine-drug 155-run OACD

For simplicity, we will call these nine drugs: x1, x2, … , x9 (CLZ, EMB, PA824, PAS, PRO, PZA, RIF, SQ109, TMC), which
is common in factorial design literature. Each drug is tested at three levels: zero dose, half dose, and full dose, of the
concentrations of the drug that achieved 15% inhibition in the screening test, see Silva et al4 for additional details. For
model fitting purposes, each drug is coded as −1 for the zero dose, 0 for the half dose, and +1 for the full dose.

The design for the 155-run OACD with k = 9 is presented in Table 1. This OACD combines a 128-run two-level frac-
tional factorial design, such that the levels of each drug are coded as −1 and +1, and a 27-run three-level OA, with levels
coded as −1, 0, and +1. The 128-run two-level factorial design is a one-quarter fraction of a full 29 factorial design with
design generators x8 = x1x2x3x4x5 and x9 = x1x2x3x6x7. This fractional factorial design has resolution V, which enables the
estimation of all nine linear effects plus all 36 bilinear effects. The 27-run OA is a subset of the commonly used OA(27, 313),
which is a 27 × 9 matrix such that all 32 level combinations appear equally often in all 27 × 2 submatrices. This OA has the
ability to estimate all nine linear effects plus nine quadratic effects for each drug. Table S1 in the supplementary material
includes the 155-run OACD and data.

To illustrate the built-in ability to perform cross-validation, we fit three models using the 155-run OACD. First, using
all 155 runs we fit a second-order model to the data to estimate the linear, quadratic, and bilinear effects. Second, the first
128 runs corresponding to the two-level fractional factorial design are used to fit a model containing all nine linear effects
plus all 36 bilinear effects. Third, using the last 27 runs from the three-level OA we fit a model with all nine linear effects
and all nine quadratic effects. To distinguish the three models we use the design run sizes and refer to them as 155-run
model, 128-run model, and 27-run model, respectively.
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F I G U R E 6 Nine-drug experiment |t|-statistics

Table 3 presents the parameter estimates and significance levels for these three models. In all three models, the lin-
ear effect of each drug is consistent in terms of both sign and magnitude of the parameter estimate. Eight out of the nine
drugs are statistically significant at the 5% level in increasing the percent of inhibition in both the 155-run and 128-run
models. The drug, PAS, is not statistically significant. The remaining eight drugs all have positive coefficients imply-
ing they contribute to higher percentages of inhibition. Of the nine quadratic effects estimated in the 155-run model
and 27-run model, only CLZ is statistically significant at the 5% level. While, the sign and magnitude for this effect are
consistent in both the 155-run and 27-run model, it is only significant for the full 155-run model. Among the 36 bilin-
ear effects, 14 are identified as statistically significant at the 5% level and consistent in both the 155-run and 128-run
models.

Figure 6 presents a comparison of the three models in terms of the |t|-statistics, which can be used to further check con-
sistency and significance among the parameter estimates. The vertical axis indicates the corresponding linear, quadratic,
and bilinear effects. The horizontal axis represents the |t|-statistic. The vertical dashed line represents a |t|-statistic of 2.5.
In all three models the individual effect of each drug is consistent for the 155-run and 128-run models, with more varia-
tion for the 27-run model. The variation in the 27-run model can be explained by the fact that this model only includes
linear and quadratic effects, and as a result the estimates have larger standard errors and smaller |t|-statistics. Of the
nine linear effects, eight of them have a |t|-statistic greater than 2.5. The drug, PAS, does not appear to have an effect on
the inhibition, which is consistent with the parameter estimates and significance levels provided in Table 3. Of the nine
quadratic effects estimated, only CLZ has a |t|-statistic above 2.5 in the 155-run model. Among the 36 bilinear effects, 16
are identified with |t|-statistics above 2.5 in the 155-run and 128-run models.
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T A B L E 4 Parameter estimates for the six-drug experiment

50-Run 32-Run 18-Run

CLZ 0.0556*** 0.0566*** 0.0875**

EMB 0.0545*** 0.0491** 0.0717**

PRO 0.0538*** 0.0509** 0.0675*

PZA 0.0782*** 0.0716*** 0.1183***

RIF 0.0485*** 0.0528** 0.0358

TMC 0.0556*** 0.0584*** 0.0675*

CLZ2 −0.0147 −0.0542

EMB2 0.0272 −0.0117

PRO2 0.0283 0.0158

PZA2 −0.0184 −0.0217

RIF2 0.0398 0.0158

TMC2 0.0219 0.0058

CLZ:EMB −0.0009 −0.0022

CLZ:PRO −0.0032 0.0009

CLZ:PZA −0.0117 −0.0122

CLZ:RIF −0.0275** −0.0259

CLZ:TMC −0.0007 −0.0016

EMB:PRO −0.0037 0.0009

EMB:PZA −0.0149 −0.0109

EMB:RIF 0.0125 0.0116

EMB:TMC −0.0079 −0.0053

PRO:PZA −0.0229* −0.0203

PRO:RIF 0.0029 0.0034

PRO:TMC −0.0076 −0.0097

PZA:RIF −0.0131 −0.0134

PZA:TMC −0.0163 −0.0166

RIF:TMC −0.0355*** −0.0341*

Residual error �̂� 0.05519 0.06914 0.05915

R2 0.9471 0.9384 0.9636

Significance levels: 0‘***’ 0.001‘**’ 0.01‘*’ 0.05‘⋅’

6.2 Six-drug 50-run OACD

To further explore the TB drugs that contribute to the highest percentage of inhibition and to identify efficient three- and
four-drug combinations, Silva et al4 perform a follow up experiment in Iteration II such that the dosage for each drug
is updated. Since PAS was considered insignificant in the 155-run OACD it is removed from the follow-up experiment.
Furthermore, while both SQ109 and PA824 are statistically significant in the initial experiment, they are not considered
in the follow-up experiment as they are considered experimental drugs that are still in clinical trials. Thus, a follow-up
experiment is performed with the following six drugs: CLZ, EMB, PRO, PZA, RIF, and TMC. Similar to Iteration I, we call
these drugs: x1, x2, x3, x4, x5, x6. Each drug is tested at three levels: zero dose, half dose, and full dose, and the dosage for
each drug is updated such that the concentration of the drug that achieved 20% inhibition in the screening test is used,
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T A B L E 5 Projected top three- and four-drug combinations using the 50-run OACD

CLZ EMB PRO PZA RIF TMC Predicted inhibition Standard error

Top three-drug combinations

1 −1 −1 1 −1 1 0.725 0.0260

−1 1 −1 1 1 −1 0.702 0.0279

1 −1 1 −1 −1 1 0.671 0.0264

−1 1 −1 1 −1 1 0.665 0.0289

Top four-drug combinations

1 1 −1 1 −1 1 0.834 0.0256

1 −1 1 1 −1 1 0.787 0.0264

1 1 1 −1 −1 1 0.780 0.0260

1 0 −1 1 −1 1 0.779 0.0243

see Silva et al4 for additional details. For model fitting purposes each drug is coded as −1 for the zero dose, 0 for the half
dose, and +1 for the full dose.

The design for the 50-run OACD with k = 6 is presented in Table 1. This OACD is a combination of a 32-run
two-level fractional factorial design, with levels coded as −1 and +1, and an 18-run OA, with levels coded as −1, 0,
and +1. The 32-run fractional factorial design is a half-fraction of a full 26 factorial design with design generator,
x6 = x1x2x3x4x5. This fractional factorial design is a resolution VI design, which enables the estimation of all six linear
effects plus 15 bilinear effects. The 18-run OA is a subset of the commonly used OA(18, 37), which is an 18 × 6 matrix
such that all 32 level combinations appear equally often in all 18 × 2 submatrices. This 18-run OA enables the esti-
mate all of six linear plus six quadratic effects. Table S2 in the supplementary material includes the 50-run OACD and
data.

Like in the 155-run OACD, we fit three models using the 50-run OACD. Table 4 presents the parameter estimates and
significance levels for these three models. Comparing the three models, with the exception of one drug in one model,
all six linear effects are statistically significant at the 5% level and consistent across the three models in terms of their
magnitude and positive sign. While RIF is statistically significant at the 5% level for the 50-run and 32-run models, it is
only significant at the 10% level in the 18-run model. However, the coefficient of RIF is consistent in terms of magnitude
and positive sign. None of the quadratic effects appear to have an effect on the inhibition. As for the 15 bilinear effects,
three are statistically significant at the 5% level for the 50-run model. Stepwise regression is then performed as a means
for variable selection. The final model at the 5% significance level is as follows:

ŷ = 0.600 + 0.057x1 + 0.054x2 + 0.053x3 + 0.080x4 + 0.050x5 + 0.059x6 − 0.027x1x5 − 0.022x3x4 − 0.037x5x6. (5)

All six drugs x1, x2, x3, x4, x5, x6 (CLZ, EMB, PRO, PZA, RIF, and TMC) have a positive significant effect on the inhi-
bition. Three bilinear effects between two drugs are statistically significant (CLZ:RIF, PRO:PZA, RIF:TMC), all of which
have a negative coefficient. This model results in an R2 of 0.90.

We use the model in Equation (5) to predict top three- and four-drug combinations, which are of practical interest
and importance. Table 5 presents the top three- and four-drug combinations based on predictions from a full 36 factorial
design. Recall that −1, 0, and +1 represent zero, half, and full dose, respectively. The top three-drug combinations have
projected inhibitions between 66.5% and 72.5% whereas the top four-drug combinations all have projected inhibitions
greater than 77% and include both CLZ and TMC. None of the top four-drug combinations include RIF.

We compare the predicted results with the experimental inhibitions based on the standard regimens for TB treatment
from the 1970s and 1980s reported in Table 5 of Silva et al.4 The 1970s regimen consisted of the following four drugs:
INH (isoniazid), RIF, EMB, and STR (streptomycin), and resulted in 71% of inhibition. The 1980s regimen consisted of
the following four drugs: INH, RIF, EMB, and PZA, which resulted in 62% of inhibition, but at the same time shortened
the length of treatment by almost half. Thus, all of the top four-drug combinations in Table 5 have projected inhibitions
higher than the standard regimens from the 1970s and 1980s. Silva et al4 performed follow-up experiments to validate the
effectiveness of select top three-drug and four-drug combinations.
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T A B L E 6 Robustness of parameter estimates for the six-drug experiment

Missing

None Factorial Axial

Terms Coef (SE) Coef (SE) Coef (SE)

CLZ 0.0556 (0.0086) 0.0608 (0.0078) 0.0556 (0.0088)

EMB 0.0545 (0.0085) 0.0486 (0.0078) 0.0546 (0.0088)

PRO 0.0538 (0.0086) 0.0587 (0.0078) 0.0538 (0.0089)

PZA 0.0782 (0.0086) 0.0840 (0.0079) 0.0783 (0.0089)

RIF 0.0485 (0.0086) 0.0418 (0.0080) 0.0485 (0.0089)

TMC 0.0556 (0.0086) 0.0625 (0.0080) 0.0557 (0.0089)

CLZ2 −0.0147 (0.0279) −0.0220 (0.0248) −0.0148 (0.0286)

EMB2 0.0272 (0.0279) 0.0176 (0.0249) 0.0272 (0.0285)

PRO2 0.0283 (0.0275) 0.0253 (0.0243) 0.0283 (0.0282)

PZA2 −0.0184 (0.0273) −0.0289 (0.0244) −0.0184 (0.0280)

RIF2 0.0398 (0.0277) 0.0500 (0.0247) 0.0398 (0.0283)

TMC2 0.0219 (0.0268) 0.0230 (0.0237) 0.0219 (0.0275)

CLZ:EMB −0.0009 (0.0093) 0.0072 (0.0087) −0.0009 (0.0096)

CLZ:PRO −0.0032 (0.0093) −0.0091 (0.0085) −0.0033 (0.0096)

CLZ:PZA −0.0117 (0.0092) −0.0174 (0.0084) −0.0117 (0.0095)

CLZ:RIF −0.0275 (0.0093) −0.0209 (0.0086) −0.0276 (0.0097)

CLZ:TMC −0.0007 (0.0090) −0.0071 (0.0083) −0.0008 (0.0093)

EMB:PRO −0.0037 (0.0090) 0.0016 (0.0082) −0.0037 (0.0093)

EMB:PZA −0.0150 (0.0090) −0.0083 (0.0083) −0.0149 (0.0093)

EMB:RIF 0.0125 (0.0090) 0.0075 (0.0082) 0.0126 (0.0093)

EMB:TMC −0.0079 (0.0090) −0.0019 (0.0083) −0.0078 (0.0093)

PRO:PZA −0.0229 (0.0091) −0.0285 (0.0083) −0.0228 (0.0094)

PRO:RIF 0.0030 (0.0090) 0.0078 (0.0082) 0.0031 (0.0093)

PRO:TMC −0.0076 (0.0090) −0.0139 (0.0083) −0.0075 (0.0093)

PZA:RIF −0.0131 (0.0090) −0.0074 (0.0082) −0.0130 (0.0093)

PZA:TMC −0.0164 (0.0090) −0.0233 (0.0084) −0.0163 (0.0093)

RIF:TMC −0.0355 (0.0091) −0.0276 (0.0085) −0.0354 (0.0094)

For this six-drug 50-run OACD, Table 6 illustrates the robustness of an OACD with one missing observation. The
first column represents the factorial effects included in the full second-order model, which contains 6 linear effects, 6
quadratic effects, and 15 bilinear effects. The next six columns provide the parameter estimates and standard errors of
the coefficients from the full second-order model based on the OACD with no missing observations, one missing facto-
rial point with the largest Cook’s distance (run 10), and one missing axial point with the largest percent of inhibition
(run 35). Comparing the parameter estimates from the OACD with no missing observations to those with one missing
observation, we can see the robustness of the OACD as missing one observation does not substantially affect the consis-
tency of the parameter estimates. Overall, for the majority of the parameter estimates there is clear consistency among all
three columns, with the exception of two bilinear effects, CLZ:PRO and PRO:RIF, which are not identified as statistically
significant in Table 4.
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7 CONCLUDING REMARKS

The OACD introduced in the present study served as a good example of combining a two-level factorial design and
three-level OA through an application for drug combination determination for TB. We effectively examined single drug
effects as well as multi-drug interaction effects, simultaneously. Furthermore, we demonstrated many appealing proper-
ties of OACDs such as robustness to missing observations and allowing multiple analyses for cross-validation. The ability
to perform cross-validation in biological applications is a valuable property since they often possess internal variances,
and thus cross-validation between different models would assure more accurate and reliable conclusions.

We found that generally OACDs are more effective in estimating the parameters than the commonly used CCDs, have
more precise model predictions than CCDs, and the overall performance of an OACD is more robust when there are
missing observations than the CCD. While OACDs have various advantages, there are other second-order designs in the
literature that may provide a smaller number of runs and fit a full second-order model. Examples include, but are not
limited to, small composite designs (SCD),38 augmented pairs designs (APD),39 definitive screening composite designs,7
and more. If the run size of a design is of concern, it is important to note that smaller OACDs than those provided in
this article can be constructed. Xu et al6 compare three sizes of OACDs to CCDs, APDs, and SCDs, and explore their
properties. Additionally, Xu et al6 illustrate how an OACD permits the use of resolution III or IV designs for the two-level
portion, resulting in an OACD with a smaller number of runs and a higher efficiency for estimating the parameters
in a second-order model compared to a CCD. Furthermore, Zhou and Xu7 compare various sizes of OACDs to many
existing and popular designs. Overall, OACDs can be used as an alternative to the popular CCDs for response surface
modeling.
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APPENDIX

T A B L E A1 Three-level OAs with 9, 18, and 27 runs
OA(9)
−1 −1 −1 −1
−1 0 0 1
−1 1 1 0
0 −1 0 0
0 0 1 −1
0 1 −1 1
1 −1 1 1
1 0 −1 0
1 1 0 −1

OA(18)
−1 −1 −1 −1 −1 −1 −1
−1 0 0 0 0 0 0
−1 1 1 1 1 1 1
0 −1 −1 0 0 1 1
0 0 0 1 1 −1 −1
0 1 1 −1 −1 0 0
1 −1 0 −1 1 0 1
1 0 1 0 −1 1 −1
1 1 −1 1 0 −1 0
−1 −1 1 1 0 0 −1
−1 0 −1 −1 1 1 0
−1 1 0 0 −1 −1 1
0 −1 0 1 −1 1 0
0 0 1 −1 0 −1 1
0 1 −1 0 1 0 −1
1 −1 1 0 1 −1 0
1 0 −1 1 −1 0 1
1 1 0 −1 0 1 −1

OA(27)
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 0 0 −1 1 0 1 1 −1 0 0 1
−1 −1 1 1 −1 0 1 0 0 −1 1 1 0
−1 0 −1 0 1 0 −1 0 1 0 0 1 −1
−1 0 0 1 1 −1 0 −1 0 0 1 −1 1
−1 0 1 −1 1 1 1 1 −1 0 −1 0 0
−1 1 −1 1 0 1 −1 1 0 1 1 0 −1
−1 1 0 −1 0 0 0 0 −1 1 −1 1 1
−1 1 1 0 0 −1 1 −1 1 1 0 −1 0
0 −1 −1 0 0 0 0 −1 0 0 −1 0 0
0 −1 0 1 0 −1 1 1 −1 0 0 1 −1

0 −1 1 −1 0 1 −1 0 1 0 1 −1 1
0 0 −1 1 −1 1 0 0 −1 1 0 −1 0

0 0 0 −1 −1 0 1 −1 1 1 1 0 −1
0 0 1 0 −1 −1 −1 1 0 1 −1 1 1
0 1 −1 −1 1 −1 0 1 1 −1 1 1 0
0 1 0 0 1 1 1 0 0 −1 −1 −1 −1
0 1 1 1 1 0 −1 −1 −1 −1 0 0 1
1 −1 −1 1 1 1 1 −1 1 1 −1 1 1
1 −1 0 −1 1 0 −1 1 0 1 0 −1 0
1 −1 1 0 1 −1 0 0 −1 1 1 0 −1

1 0 −1 −1 0 −1 1 0 0 −1 0 0 1
1 0 0 0 0 1 −1 −1 −1 −1 1 1 0
1 0 1 1 0 0 0 1 1 −1 −1 −1 −1
1 1 −1 0 −1 0 1 1 −1 0 1 −1 1
1 1 0 1 −1 −1 −1 0 1 0 −1 0 0
1 1 1 −1 −1 1 0 −1 0 0 0 1 −1
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